Python Interfaces

IDLE — a cross-platform Python development

environment

PyvthonWin — a Windows only interface to
Python

Python Shell — running 'python' from the
Command Line opens this interactive shell

For the exercises, we'll use IDLE, but you can
try them all and pick a favorite


http://en.wikipedia.org/wiki/IDLE_(Python)
http://sourceforge.net/projects/pywin32/

IDLE — Development Environment

* |IDLE helps you program

in Python by:

— color-coding your
program code

— debugging
— auto-indent
— interactive shell

*Python Shell _ (O] x
File Edt Debug Windnws{_ﬂ,&l&“ﬁ/{

Frx o # 4 COomment—
*x= TP = "a string"”
e Zircle:

Comm aifs re red.

[

\_La
x> Moutput”
'output!
i - ﬁ“{

Sfrdgs are green.

Defivifions are Blue.

Eeywords are oranige,

Cedpt 15 bive,




Example Python

Hello World

Prints hello world to
standard out

Open IDLE and try it out
yourself

Follow along using IDLE

OO Python Shell

Python 2.5.1 (r251:54869, apr 18 2007, 2E:05:04)
[GCC 4.0.1 (Apple Computer, Inc. buvild 532679 ] on darwin
Type "copyright", "credits" or "license()" for more informatiom.

Fersonal firewall software may warn about the conmection IDLE
makes to its suvbprocess wsing this computer’s internal loopback
interface. This conmection is not visible on any external
interface and no data is sent to or received from the Internet.

IOLE 1.2.1
P

hello world
srn |

Ln: 15 Col: 4




More than just printing

* Python is an object oriented language
* Practically everything can be treated as an
object
IS a string

e Strings, as objects, have methods that return
the result of a function on the string



http://docs.python.org/lib/string-methods.html

String Methods

Assign a string to a
variable

In this case “hw”
hw.title ()
hw.upper ()
hw.isdigit ()

hw.1lslower ()

]

o

Python Shell

Pythom 2.5.1 (r251:5486%, apr 18 2007, 22:03:04)

[G2C 4.0.1 (apple Computer, Inc. build 53671 ] on darwin
Type "copyright”, "credits" or "license()" for more information.

Personal firewall software may warn about the connection IDLE

makes to its subprocess wsing this computer's inkernal loopback
interface.
interface and mo data is sent to or received from the Internet.

Thi=s conmection is not visible on any external

IDLE 1.

Prr

2.1

hello world

»x» hew

#e» har,

'Hello

w2 how,

"HELLD

w2 how,

False

»x» her.

True
ey |

title()
World'

uppEr()
WORLD'
isdigit()

i=slomer( )

Ln: 24|Cal: 4




String Methods

* The string held in your variable remains the
same

* The method returns an altered string

* Changing the variable requires reassighment
—hw = hw.upper ()
— hw now equals “HELLO WORLD”



Other Python Objects

Lists (mutable sets of strings)

— var = [] # create list

— var = [‘one’, 2, ‘three’, ‘banana’]

Tuples (immutable sets)

— var = (‘one’, 2, ‘three’, ‘banana’)
Dictionaries (associative arrays or ‘hashes’)
— var = {} # create dictionary

— var = {‘lat’: 40.20547, ‘lon': -74.76322}
— var[‘lat’] = 40.2054

Each has its own set of methods



Lists

Think of a list as a stack of cards, on which
your information is written

The information stays in the order you place it
in until you modify that order

Methods return a string or subset of the list or
modify the list to add or remove components

Written as var[index], index refers to order
within set (think card number, starting at 0)

You can step through lists as part of a loop



List Methods

 Adding to the List
— var[n] = object
* replaces n with object
— var.append(object)
* adds object to the end of the list
 Removing from the List
— var[n] =]
e empties contents of card, but preserves order

— var.remove(n)
* removes card at n
— var.pop(n)
* removes n and returns its value



Lists in ArcToolbox

You will create lists:

* Layers as inputs

e Attributes to match
* Arrays of objects

uuuuuuuuuuuuuu

You will work with lists: |
e List of field names
e List of selected features




Tuples

Like a list, tuples are iterable arrays of objects

Tuples are immutable —
once created, unchangeable

To add or remove items, you must redeclare
Example uses of tuples

— County Names
— Land Use Codes
— Ordered set of functions



Dictionaries

Dictionaries are sets of key & value pairs

Allows you to identify values by a descriptive
name instead of order in a list

Keys are unordered unless explicitly sorted
Keys are unique:

— var[‘item’] = “apple”
— var[‘item’] = “banana”

— print var[‘item’] prints just banana



Conditional Branching

e if and else

if variable == condition:
#do something based onv==c¢

else:
#do something based onv I=c
 elif allows for additional branching

if condition:
elif another condition:

else: #none of the above



Looping with For

* For allows you to loop over a block of code a set
number of times

* For is great for manipulating lists:
a = ['cat’, 'window', 'defenestrate’]
for x in a:

print x, len(x)
Results:

cat 3
window 6
defenestrate 12



Looping with For

We could use a for loop to perform
geoprocessing tasks on each layer in a list

We could get a list of features in a feature
class and loop over each, checking attributes

Anything in a sequence or list can be used in a
For loop

Just be sure not to modify the list while
looping



Modules

Modules are additional pieces of code that
further extend Python’s functionality

A module typically has a specific function
— additional math functions, databases, network...

Python comes with many useful modules

arcgisscripting is the module we will use to
load ArcGIS toolbox functions into Python



Modules

* Modules are accessed using import
— import sys, os # imports two modules

* Modules can have subsets of functions
— 0s.path is a subset within os

* Modules are then addressed by
modulename.function()
— sys.argv # list of arguments
— filename = os.path.splitext(" points.txt")
— filename[1] # equals ".txt"



Files

Files are manipulated by creating a file object
— f = open("points.txt", "r")

The file object then has new methods
— print f.readline() # prints line from file
Files can be accessed to read or write
— f = open("output.txt”, "w")

— f.write("Important Output!")

Files are iterable objects, like lists



Error Capture

* Check for type assignment errors, items not in
a list, etc.
* Try & Except
try:
a block of code that might have an error

except:
code to execute if an error occurs in "try"

* Allows for graceful failure
— important in ArcGIS



Additional Python Resources

Python Homepage
http://www.python.org/

Dive Into Python
nttp://www.diveintopython.org/

Learning Python, 3" Edition
http://www.oreilly.com/catalog/9780596513986/

Getting Started Writing Geoprocessing Scripts
Available on ESRI's support page



http://www.python.org/
http://www.diveintopython.org/
http://www.oreilly.com/catalog/9780596513986/
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?id=718&pid=717&topicname=About_getting_started_with_writing_geoprocessing_scripts

