
Python Interfaces

• IDLE – a cross-platform Python development 
environment

• PythonWin – a Windows only interface to 
Python

• Python Shell – running 'python' from the 
Command Line opens this interactive shell

• For the exercises, we'll use IDLE, but you can 
try them all and pick a favorite

http://en.wikipedia.org/wiki/IDLE_(Python)
http://sourceforge.net/projects/pywin32/


IDLE – Development Environment

• IDLE helps you program 
in Python by:

– color-coding your 
program code

– debugging

– auto-indent

– interactive shell



Example Python

• Hello World
print “hello world”

• Prints hello world to 
standard out

• Open IDLE and try it out 
yourself

• Follow along using IDLE



More than just printing

• Python is an object oriented language

• Practically everything can be treated as an 
object

• “hello world” is a string

• Strings, as objects, have methods that return 
the result of a function on the string

http://docs.python.org/lib/string-methods.html


String Methods

• Assign a string to a 
variable

• In this case “hw”

• hw.title()

• hw.upper()

• hw.isdigit()

• hw.islower()



String Methods

• The string held in your variable remains the 
same

• The method returns an altered string

• Changing the variable requires reassignment
– hw = hw.upper()

– hw now equals “HELLO WORLD”



Other Python Objects

• Lists (mutable sets of strings)
– var = [] # create list

– var = [‘one’, 2, ‘three’, ‘banana’]

• Tuples (immutable sets)
– var = (‘one’, 2, ‘three’, ‘banana’)

• Dictionaries (associative arrays or ‘hashes’)
– var = {} # create dictionary

– var = {‘lat’: 40.20547, ‘lon’: -74.76322}

– var[‘lat’] = 40.2054

• Each has its own set of methods



Lists

• Think of a list as a stack of cards, on which 
your information is written

• The information stays in the order you place it 
in until you modify that order

• Methods return a string or subset of the list or 
modify the list to add or remove components

• Written as var[index], index refers to order 
within set (think card number, starting at 0)

• You can step through lists as part of a loop



List Methods

• Adding to the List
– var[n] = object

• replaces n with object

– var.append(object)
• adds object to the end of the list

• Removing from the List
– var[n] = []

• empties contents of card, but preserves order

– var.remove(n)
• removes card at n

– var.pop(n)
• removes n and returns its value



Lists in ArcToolbox

You will create lists:

• Layers as inputs

• Attributes to match

• Arrays of objects

You will work with lists:

• List of field names

• List of selected features



Tuples

• Like a list, tuples are iterable arrays of objects

• Tuples are immutable –
once created, unchangeable

• To add or remove items, you must redeclare

• Example uses of tuples

– County Names

– Land Use Codes

– Ordered set of functions 



Dictionaries

• Dictionaries are sets of key & value pairs

• Allows you to identify values by a descriptive 
name instead of order in a list

• Keys are unordered unless explicitly sorted

• Keys are unique:

– var[‘item’] = “apple”

– var[‘item’] = “banana”

– print var[‘item’] prints just banana



Conditional Branching

• if and else
if variable == condition:

#do something based on v == c

else:

#do something based on v != c

• elif allows for additional branching
if condition:

elif another condition:

…

else: #none of the above



Looping with For

• For allows you to loop over a block of code a set 
number of times

• For is great for manipulating lists:
a = ['cat', 'window', 'defenestrate']
for x in a:

print x, len(x)
Results:
cat 3
window 6
defenestrate 12



Looping with For

• We could use a for loop to perform 
geoprocessing tasks on each layer in a list

• We could get a list of features in a feature 
class and loop over each, checking attributes

• Anything in a sequence or list can be used in a 
For loop

• Just be sure not to modify the list while 
looping



Modules

• Modules are additional pieces of code that 
further extend Python’s functionality

• A module typically has a specific function

– additional math functions, databases, network…

• Python comes with many useful modules

• arcgisscripting is the module we will use to 
load ArcGIS toolbox functions into Python



Modules

• Modules are accessed using import
– import sys, os # imports two modules

• Modules can have subsets of functions
– os.path is a subset within os

• Modules are then addressed by 
modulename.function()
– sys.argv # list of arguments

– filename = os.path.splitext("points.txt")

– filename[1] # equals ".txt"



Files

• Files are manipulated by creating a file object

– f = open("points.txt", "r")

• The file object then has new methods

– print f.readline() # prints line from file

• Files can be accessed to read or write

– f = open("output.txt", "w")

– f.write("Important Output!")

• Files are iterable objects, like lists



Error Capture

• Check for type assignment errors, items not in 
a list, etc.

• Try & Except
try:

a block of code that might have an error

except:
code to execute if an error occurs in "try"

• Allows for graceful failure
– important in ArcGIS



Additional Python Resources

• Python Homepage
http://www.python.org/

• Dive Into Python
http://www.diveintopython.org/

• Learning Python, 3rd Edition
http://www.oreilly.com/catalog/9780596513986/

• Getting Started Writing Geoprocessing Scripts
Available on ESRI's support page

http://www.python.org/
http://www.diveintopython.org/
http://www.oreilly.com/catalog/9780596513986/
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?id=718&pid=717&topicname=About_getting_started_with_writing_geoprocessing_scripts

